Abstract
In the present work we investigate the dielectric relaxation effects and charge trapping characteristics of HfO2 /Dy2O3 gate stacks grown on Ge substrates. The MOS devices have been subjected to constant voltage stress (CVS) conditions at accumulation and show relaxation effects in the whole range of applied stress voltages. Applied voltage polarities as well as thickness dependence of the relaxation effects have been investigated. Charge trapping is negligible at low stress fields while at higher fields (>4MV/cm) it becomes significant. In addition, we give experimental evidence that in tandem with the dielectric relaxation effect another mechanism- the so-called Maxwell-Wagner instability- is present and affects the transient current during the application of a CVS pulse. This instability is also found to be field dependent thus resulting in a trapped charge which is negative at low stress fields but changes to positive at higher fields.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.