Abstract

A new organic–inorganic hybrid, AZEMnBr, has been synthesized and characterized. The thermal differential scanning calorimetry, differential thermal analysis, and thermogravimetric analyses indicate one structural phase transition (PT) at 346 and 349 K, on cooling and heating, respectively. AZEMnBr crystallizes at 365 K in the orthorhombic, Pnma, structure, which transforms to monoclinic P21/n at 200 K. Due to the X-ray diffraction studies, the anionic MnBr42– moiety is discrete. The azetidinium cations show dynamical disorder in the high-temperature phase. In the proposed structural PT, the mechanism is classified as an order–disorder type. The structural changes affect the dielectric response. In this paper, the multiple switches between low- and high- dielectric states are presented. In addition, it was also observed that the crystal possesses a mutation of fluorescent properties between phase ON and OFF in the PT’s point vicinity. We also demonstrate that EPR spectroscopy effectively detects PTs in structurally diverse Mn(II) complexes. AZEMnBr compounds show DC magnetic data consistent with the S = 5/2 spin system with small zero-field splitting, which was confirmed by EPR measurements and slow magnetic relaxation under the moderate DC magnetic field typical for a single-ion magnet behavior. Given the above, this organic–inorganic hybrid can be considered a rare example of multifunctional materials that exhibit dielectric, optical, and magnetic activity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.