Abstract

Multiferroic properties of (x) CoMn0.2Fe1.8O4–(1-x) BaTiO3 particulate magnetoelectric (ME) composites with x = 0.1, 0.2, 0.3 M percentage was investigated. The CoMn0.2Fe1.8O4 (CMFO) phase was synthesized by solution combustion route and BaTiO3 (BT) phase was synthesized by wet chemical method. X-ray diffraction studies revealed the purity of constitute phases; confirmed the manifestation of CMFO and BT within the ME composite structure. The microstructural aspects were observed by using Fe-SEM; revealed the effect of constituent phases on the average grain size of the composites. The temperature dependent dielectric properties for BT exhibited the three anomalies associated to its crystallographic lattice structure change with temperature. Dielectric constant of the composite was found to be decreased with CMFO content. All the composite structures exhibited typical magnetic hysteresis nature at room temperature and showed linear effect on the saturation magnetization of the composite with CMFO content. The ME response was examined at room temperature with an ac magnetic field at 1 kHz, all the composite showed a sharp decreasing behavior of the ME voltage coefficient (αME) to an applied dc bias in low field region. The maximum αME factor of ∼8.51 mV/cm Oe was observed for 10% CMFO–90% BT composition.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call