Abstract

We develop an approach to describe the Dicke transition of interacting many-particle systems strongly coupled to the light of a lossy cavity. A mean-field approach is combined with a perturbative treatment of fluctuations beyond mean field, which becomes exact in the thermodynamic limit. These fluctuations completely change the nature of the steady state, determine the thermal character of the transition, and lead to universal properties of the emerging self-organized states. We validate our results by comparing them with time-dependent matrix-product-state calculations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.