Abstract
Catalytic asymmetric conjugate additions of carbon nucleophiles have emerged as a potent tool for constructing multi-stereogenic molecules with precise stereochemical control. This review explores the concept of diastereodivergence in such reactions, focusing on strategies to achieve selective access to diverse diastereomeric products upon carbon-carbon bond formation. Drawing from a rich array of examples, we delve into key approaches for controlling the stereochemical outcome of these transformations, including alteration of alkene geometry, fine-tuning of reaction parameters, synergistic catalysis, and isomerization of conjugate adducts. Additionally, we highlight the iterative strategies for conjugate additions, showcasing their potential for diastereodivergent synthesis of methyl-branched stereocenters in 1,3-relationships. By presenting a concentrated overview of this significant topic, this review aims to provide valuable insights into the design and execution of stereodivergent catalytic conjugate additions, offering new avenues for advancing stereoselective synthesis and structural diversity in organic synthesis.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have