Abstract

In this article, we propose some diagnostic techniques for the inverse Gaussian regression model (IGRM), which are appropriate for modeling the response variable that undertakes positively skewed continuous dataset. Moreover, two new diagnostic methods are mainly proposed for the IGRM, which named as covariance ratio (CVR) and Welsch’s distance (WD). The comparison of our proposed methods of influence diagnostics with the existing approaches has been made through Monte Carlo simulation under different factors. In addition, the benefit of the proposed methods is assessed using a real application. Based on the simulation and empirical application results, we observed that the performance of the proposed method is better than the existing methods for detection of influential observations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.