Abstract
AbstractWe introduce a multivariate Poisson‐Generalized Inverse Gaussian regression model with varying dispersion and shape for modeling different types of claims and their associated counts in nonlife insurance. The multivariate Poisson‐Generalized Inverse Gaussian regression model is a general class of models which, under the approach adopted herein, allows us to account for overdispersion and positive correlation between the claim count responses in a flexible manner. For expository purposes, we consider the bivariate Poisson‐Generalized Inverse Gaussian with regression structures on the mean, dispersion, and shape parameters. The model's implementation is demonstrated by using bodily injury and property damage claim count data from a European motor insurer. The parameters of the model are estimated via the Expectation‐Maximization algorithm which is computationally tractable and is shown to have a satisfactory performance.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.