Abstract

In numerous application areas, when the response variable is continuous, positively skewed, and well fitted to the inverse Gaussian distribution, the inverse Gaussian regression model (IGRM) is an effective approach in such scenarios. The problem of multicollinearity is very common in several application areas like chemometrics, biology, finance, and so forth. The effects of multicollinearity can be reduced using the ridge estimator. This research proposes new ridge estimators to address the issue of multicollinearity in the IGRM. The performance of the new estimators is compared with the maximum likelihood estimator and some other existing estimators. The mean square error is used as a performance evaluation criterion. A Monte Carlo simulation study is conducted to assess the performance of the new ridge estimators based on the minimum mean square error criterion. The Monte Carlo simulation results show that the performance of the proposed estimators is better than the available methods. The comparison of proposed ridge estimators is also evaluated using two real chemometrics applications. The results of Monte Carlo simulation and real applications confirmed the superiority of the proposed ridge estimators to other competitor methods.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.