Abstract
The inverse Gaussian regression (IGR) model parameters are generally estimated using the maximum likelihood (ML) estimation method. Since the multicollinearity problem exists among the explanatory variables, the ML estimation method becomes inflated. When the multicollinearity problem occurs, biased estimators can be used to estimate the parameters of the model. One of the most widely used biased estimators is the Liu-type estimator. In this study, we extend the Liu-type estimator for the IGR model. The proposed estimator is compared with the Ridge and Liu estimators defined for the IGR model in terms of the mean squared error (MSE) criterion. Also, a real data example is presented to illustrate the superiority of the proposed estimator. Experimental results show that the Liu-type estimator outperforms the Ridge and Liu estimators when multicollinearity exists.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Communications in Statistics - Simulation and Computation
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.