Abstract
Purpose. To develop an artificial neural network for diagnosing and predicting the development of cholecystitis based on an analysis of data on risk factors, and to explore the possibilities of its application in real clinical practice. Materials and methods. The collection of materials was held in at the hospitals of the city of Kursk and included a survey of 488 patients with hepatopancreatoduodenal diseases. 203 patients were suffering from cholecystitis, in 285 patients the diagnosis of cholecystitis was excluded. Analysis of risk factors’ data (such as sex, age, bad habits, profession, family relationships, etc.) was carried out using an internally developed artificial neural network (multilayer perceptron with hyperbolic tangent as the activation function). The computer program “System of Intellectual Analysis and Diagnosis of Diseases” was registered in accordance with established procedure (Certificate No. 2017613090). Results. The use of neural network analysis of data on risk factors in comparison with the processing of information that forms a clinical picture allows the diagnosis of a potential disease with cholecystitis before the onset of symptoms. The training of the artificial neural network with a quantitative output coding the age of probable hospitalization made it possible to generate an array of values, signifficantly (α ≤ 0.001) not differing from the empirical data. The difference between the mean calculated and mean empirical values was 0.45 for the training set and 1.75 for the clinical approbation group. The mean absolute error was within the range of 1.87–2.07 years. Conclusion. 1. The proposed new approach to the diagnosis and prognosis of cholecystitis has demonstrated its effectiveness, which is confirmed in clinical approbation by the levels of sensitivity (94.44%, m = 2.26) and specificity (80.6%, m = 3.9). 2. The error in predicting the age of probable hospitalization of patients with cholecystitis did not exceed 2.29 and 2.38 years for p = 0.95 and p = 0.99, respectively.
Highlights
Исследования и практика в медицине 2017, т.4, No4, с. 67-72 В.А.Лазаренко, А.Е.Антонов / Диагностика и прогнозирование вероятности возникновения холецистита на основе нейросетевого анализа факторов риска
To develop an artificial neural network for diagnosing and predicting the development of cholecystitis based on an analysis of data on risk factors, and to explore the possibilities of its application in real clinical practice
The use of neural network analysis of data on risk factors in comparison with the processing of information that forms a clinical picture allows the diagnosis of a potential disease with cholecystitis before the onset of symptoms
Summary
ФГБОУ ВО «Курский государственный медицинский университет» Министерства здравоохранения Российской Федерации, 305041, Россия, г. Разработать искусственную нейронную сеть для диагностики и прогнозирования развития холециститов на основе анализа данных о факторах риска, а также изучить возможности ее применения в реальной клинической практике. Применение нейросетевого анализа данных о факторах риска в сравнении с обработкой сведений, формирующих клиническую картину, позволяет осуществлять диагностику потенциального заболевания холециститом до момента проявления симптоматики. Обучение искусственной нейронной сети с количественным выходом, кодирующим возраст вероятной госпитализации, позволило генерировать массив значений, значимо (α ≤ 0,001) не отличающийся от эмпирических данных. 2. Ошибка прогноза возраста вероятной госпитализации больных по поводу холецистита не превышала 2,29 и 2,38 года для p = 0,95 и p = 0,99 соответственно. Диагностика и прогнозирование вероятности возникновения холецистита на основе нейросетевого анализа факторов риска. Для корреспонденции Антонов Андрей Евгеньевич, к.м.н., помощник ректора по общим вопросам, доцент кафедры хирургических болезней ФПО ФГБОУ ВО «Курский государственный медицинский университет» Минздрава России Адрес: 305041, Россия, г. Статья поступила 01.09.2017 г., принята к печати 30.11.2017 г
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.