Abstract
In the fresh fruit industry, identification of fruit cultivars and fruit quality is of vital importance. In the current study, nine peach cultivars (Dixon, Early Grande, Flordaprince, Flordastar, Flordaglo, Florda 834, TropicSnow, Desertred, and Swelling) were evaluated for differences in skin color, firmness, and size. Additionally, a multilayer perceptron (MLP) artificial neural network was applied for identification of the cultivars according to these attributes. The MLP was trained with an input layer including six input nodes, a single hidden layer with six hidden nodes, and an output layer with nine output nodes. A hyperbolic tangent activation function was used in the hidden layer and the cross entropy error was given because the softmax activation function was functional to the output layer. Results showed that the cross entropy error was 0.165. The peach identification process was significantly affected by the following variables in order of contribution (normalized importance): polar diameter (100%), L ∗ (89.0), b ∗ (88.0%), a ∗ (78.5%), firmness (71.3%), and cross diameter (37.5.3%). The MLP was found to be a viable method of peach cultivar identification and classification because few identifying attributes were required and an overall classification accuracy of 100% was achieved in the testing phase. Measurements and quantitative discrimination of peach properties are provided in this research; these data may help enhance the processing efficiency and quality of processed peaches.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.