Abstract

Automatic in-process data collection techniques have been widely used in complicated manufacturing processes in recent years. The huge amounts of product measurement data have created great opportunities for process monitoring and diagnosis. Given such product quality measurements, this article examines the diagnosability of the process faults in a multistage manufacturing process using a linear mixed-effects model. Fault diagnosability is defined in a general way that does not depend on specific diagnosis algorithms. The concept of a minimal diagnosable class is proposed to expose the “aliasing” structure among process faults in a partially diagnosable system. The algorithms and procedures needed to obtain the minimal diagnosable class and to evaluate the system-level diagnosability are presented. The methodology, which can be used for any general linear input–output system, is illustrated using a panel assembly process and an engine head machining process.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.