Abstract

By using density functional theory (DFT) and time-dependent density functional theory (TDDFT) methods, the sensing mechanism of a fluorescent probe 2-(2-hydroxyphenyl) benzothiazole (HBT) derivative HBTPP-S for hydrogen sulfide has been thoroughly studied. The thiolysis reaction has a moderate reaction barrier of 18.40 kcal mol-1, which indicates that the hydrogen sulfide sensing process has a favorable response speed. Because of the nonradiative donor-excited photoinduced electron transfer (d-PET, fluorophore as the electron donor) from the excited HBTPP group to the electron-withdrawing 2,4-dinitrophenyl group, as well as the inhibition of the proton transfer (PT) and the excited state intramolecular proton transfer (ESIPT) process by 2,4-dinitrophenyl group, the probe HBTPP-S is essentially nonfluorescent. On the other hand, the added hydrogen sulfide induces the thiolysis of the 2,4-dinitrophenyl ether bond, and then the thiolysis product HBTPP comes into existence. The theoretically simulated potential energy surface demonstrates that without the electron-withdrawing 2,4-dinitrophenyl group, the thiolysis product HBTPP undergoes the excited state intramolecular proton transfer (ESIPT) coupled twisted intramolecular charge transfer (TICT) processes in the first excited state. The absence of the d-PET and the process mentioned above may explain the significant fluorescent turn-on response and large Stokes shift of the thiolysis product HBTPP.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call