Abstract

Coupled intramolecular proton and charge transfer reactions play an important role in many biological and chemical reactions. In this article, we report the relaxation dynamics of the excited states of a donor substituted 1,3-diketone (DMADK, ) using steady state and ultrafast transient absorption and fluorescence spectroscopic techniques. Dramatic dependence of the fluorescence quantum yield, nonradiative rate as well as the excited state relaxation pathways on solvent polarity reveals the solvent controlled excited state intramolecular proton transfer (ESIPT) directed intramolecular charge transfer (ICT) dynamics. The molecules in the ground state coexist in two possible cis-enol (Enol-A and Enol-B) forms. Time-dependent density functional theory (TDDFT) calculations reveal solvent polarity controlled thermodynamic stabilization of one of the tautomeric structures in the S1 state, dictating the direction of proton transfer and subsequent structural relaxation. In low and medium polarity solvents, the S1 state of Enol-B (Enol-B*) undergoes ultrafast ESIPT leading to the population of Enol-A*, followed by the ICT process. In polar solvents, the ESIPT process is reversed to populate Enol-B*, which undergoes a twisted intramolecular charge transfer (TICT) process via twisting of the N,N-dimethylaniline group. This work demonstrates that the strength of electronic coupling between the donor and acceptor group determines the structure of the ICT state.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call