Abstract
The growth behavior of Cr and W surfaces using kinetic Monte Carlo (KMC) simulations based on Density-Functional Theory (DFT) is presented in this study. Three models, a growth model with random deposition and no diffusion, a growth model with restricted diffusion and a growth model with unrestricted diffusion model, were compared to understand their influence on the predicted surface roughness and layer density. The impact of deposition rate and temperature on surface growth for both metals were analyzed. For deposition rate studies, five different rates (0.01 ML/s, 0.1 ML/s, 1.0 ML/s, 10.0 ML/s, and 100 ML/s) were considered at 550 K for Cr and W respectively. The effect of temperature on roughness was also studied employing various temperatures from 300 K to 1100 K for both metals and under the two different evolution models. The results show that the unrestricted diffusion model exhibits higher roughness compared to the restricted model for both metals. The restricted model shows a stable region of roughness, whereas the unrestricted model shows a continuous increase in roughness throughout the simulation. Furthermore, layer density analysis revealed that temperature affects the filling of lower monolayers. Finally, dynamic exponents β and α for each studied model were calculated and discussed. The results highlight the influence of diffusion models, deposition rate and temperature on surface, roughness, and layer density.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.