Abstract

Mean squared error of prediction is used as the criterion for determining which of two multiple regression models (not necessarily nested) is more predictive. We show that an unrestricted (or true) model witht parameters should be chosen over a restricted (or misspecified) model withm parameters if (Pt2−Pm2)>(1−Pt2)(t−m)/n, wherePt2 andPm2 are the population coefficients of determination of the unrestricted and restricted models, respectively, andn is the sample size. The left-hand side of the above inequality represents the squared bias in prediction by using the restricted model, and the right-hand side gives the reduction in variance of prediction error by using the restricted model. Thus, model choice amounts to the classical statistical tradeoff of bias against variance. In practical applications, we recommend thatP2 be estimated by adjustedR2. Our recommendation is equivalent to performing theF-test for model comparison, and using a critical value of 2−(m/n); that is, ifF>2−(m/n), the unrestricted model is recommended; otherwise, the restricted model is recommended.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.