Abstract
In this paper we evaluate the performance of three methods for testing the existence of a unit root in a time series, when the models under consideration in the null hypothesis do not display autocorrelation in the error term. In such cases, simple versions of the Dickey–Fuller test should be used as the most appropriate ones instead of the known augmented Dickey–Fuller or Phillips–Perron tests. Through Monte Carlo simulations we show that, apart from a few cases, testing the existence of a unit root we obtain actual type I error and power very close to their nominal levels. Additionally, when the random walk null hypothesis is true, by gradually increasing the sample size, we observe that p-values for the drift in the unrestricted model fluctuate at low levels with small variance and the Durbin–Watson (DW) statistic is approaching 2 in both the unrestricted and restricted models. If, however, the null hypothesis of a random walk is false, taking a larger sample, the DW statistic in the restricted model starts to deviate from 2 while in the unrestricted model it continues to approach 2. It is also shown that the probability not to reject that the errors are uncorrelated, when they are indeed not correlated, is higher when the DW test is applied at 1% nominal level of significance. Email: kevork@uth.gr
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.