Abstract
Corrosion is a serious concern for the oil and construction industries. Controlling corrosion, therefore, remains essential in a bid to reduce costs and save lives. The anti-corrosion potentials of seven Furan-based Carbohydrazide derivatives were investigated using the density functional theory (DFT) approach and Monte Carlo (MC) simulation. The energies of the frontier molecular orbitals (FMOs) like the lowest unoccupied molecular orbital energy (ELUMO), highest occupied molecular orbital energy (EHOMO), energy gap (Eg), number of transferred electrons (ΔN), and other reactivity descriptors were computed at DFT/B3LYP/6-31G(d) level of theory. The reactive sites were determined using Fukui indices and molecular electrostatic potential (MESP) surface analysis. The adsorption behavior of the compounds on the Fe (110) surface was investigated in hydrochloric acid solution using MC simulation. The compounds displayed corrosion inhibition potentials as rationalized by their high EHOMO, A, σ, ΔN, ΔEback-donation, and low Eg, ELUMO, I, and η. This is because they showed the ability to donate electrons to the metal’s d-orbital while also accepting electrons via back-donation, as revealed by the MESP surface analysis. The MC simulation revealed good interaction between the compounds (inhibitors) and Fe(110) surface in the HCl medium. These compounds could be used as inhibitors of corrosion in the manufacturing industries.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.