Abstract

Stroke is one of the major diseases that can threaten human life and health. The incidence of ischemic stroke accounts for more than 70% of stroke. The mechanism of ischemia reperfusion (IR) injury caused by ischemic stroke is extremely complex. In recent years, dexmedetomidine has been increasingly studied in anti-cerebral IR injury as a common clinical anesthetic adjunct, but its specific mechanism is not fully understood. Therefore, this study aims to explore the effects and mechanisms of dexmedetomidine on cerebral IR injury in mice. The mouse middle cerebral artery occlusion (MCAO) model was prepared by modified suture method. Male ICR mice were randomly divided into a sham group, an IR group, an IR+D1 group (IR+administered 25 µg/kg dexmedetomidine), an IR+D2 group(IR+administered 50 µg/kg dexmedetomidine), an IR+D3 group (IR+administered 100 µg/kg dexmedetomidine), and an IR+D2+ML385 group (IR+administered 50 µg/kg dexmedetomidine and 30 mg/kg ML385). The neurologic behavior of mice was evaluated by Longa's five-point method. 2,3,5-triphenyltetrazolium chloride (TTC) staining was used to detect the percentage of cerebral infarct volume in mice. The protein expressions of nuclear factor erythroid 2-related factor 2 (Nrf2), transferrin receptor 1 (TFR1), glutathione peroxidase 4 (GPX4), and solute carrier family 7 member 11 (SLC7A11) in the cerebral tissues of mice were detected by Western blotting.Mitochondrial morphology was observed under the transmission electron microscope. The contents of MDA, Fe2+, and GSH in the cerebral tissues of mice were detected. Compared with the sham group, neurobehavioral scores, cerebral infarct volume, the contents of MDA and Fe2+, as well as the protein expression of TFR1 were significantly increased; the contents of GSH and the protein expression of SLC7A11 and GPX4 were significantly reduced (all P<0.05); mitochondria in cerebral tissue were wrinkled, cristae were reduced, and membrane density was increased in the IR group. Compared with the IR group, neurobehavioral scores, cerebral infarction volume, MDA and Fe2+ contents, as well as the protein expression of TFR1 were significantly reduced; the contents of GSH and the protein expression of SLC7A11 and GPX4 were significantly increased (all P<0.05); mitochondrial damage in cerebral tissue was significantly relieved with the pre-treatment of dexmedetomidine. Compared with the IR+D2 group, neurobehavioral scores, cerebral infarction volume, MDA and Fe2+ contents, as well as the protein expression of TFR1 were significantly increased; the contents of GSH and the protein expression of SLC7A11 and GPX4 were significantly reduced (all P<0.05);mitochondria reappeared significantly damaged with the ML385 on the basis of dexmedetomidine pre-treatment. The protective effect of dexmedetomidine on cerebral IR injury mice is related to its inhibition of ferroptosis, and the mechanism might be related to its regulation of Nrf2 expression.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.