Abstract

Compared with a two-dimensional (2D) homogeneous channel, the introduction of a 2D/2D homojunction or heterojunction is a promising method to improve the performance of a tunnel field-effect transistor (TFET), mainly by controlling the tunneling barrier. We simulate 10-nm-Lg double-gated GeSe homojunction TFETs and van der Waals (vdW) GeSe/GeTe heterojunction TFETs based on a ballistic quasi-static ab initio quantum transport simulation. Two device configurations are considered for both the homojunction and heterojunction TFETs by placing the bilayer (BL) GeSe or vdW GeSe/GeTe heterojunction as the source or drain, while the channel and the remaining drain or source use monolayer (ML) GeSe. The on-state current (Ion) values of the optimal n-type BL GeSe source homojunction TFET and the optimal p-type vdW GeSe/GeTe drain heterojunction TFET are 2320 and 2387 μA μm−1, respectively, which are 50% and 64% larger than Ion of the ML GeSe homogeneous TFET. Notably, the device performance (Ion, intrinsic delay time τ, and power dissipation PDP) of both the optimal n-type GeSe homojunction and p-type vdW GeSe/GeTe heterojunction TFETs meets the requirements of the International Roadmap for Devices and Systems for high-performance devices for the year 2034 (2020 version).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.