Abstract

Introducing heterogeneous architecture is a prospective way to improve tunneling field-effect transistors (TFETs). We investigate the van der Waals (vdW) heterojunction based on monolayer black phosphorene and indium selenide (BP/InSe heterojunction) and the double-gated 10-nm TFETs based on the vdW BP/InSe heterojunction with the contact length and position by using the ab-initio quantum transport simulations. The vdW BP/InSe heterojunction shows a type-II band edge alignment. The optimal vdW BP/InSe heterojunction TFETs have a 1-nm-length BP/InSe heterojunction at the channel’s left and right sites (1L and 1R for short). Novelty, the BP/InSe heterojunction TFETs with 1L and 1R configurations are n- and p-type devices, respectively, and corresponding high on-currents of 240 and 408 μA/μm are obtained for high-performance application (off-current: 0.1 μA/μm) at a very low supply voltage (0.3 V).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.