Abstract
The device parameters of a novel diamond diode, namely, a Schottky-pn diode (SPND), are analyzed to realize a fast switching time, a low on-resistance, and a high blocking voltage simultaneously. The SPND is composed of an n-type active layer sandwiched between a highly doped p+-type layer and a Schottky metal. The key structure is the fully depleted n-type layer. From the simulations of the energy band diagram based on the key structure of the SPND using Poisson's equations, it is concluded that the low donor density in the n-type layer and the high acceptor density in the p+-type layer are key points for the high-performance SPND.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.