Abstract
Because of Moore's (scaling/integration) law, the Cu/low-k silicon chip is getting bigger, the pin-out is getting higher, and the pitch is getting finer. Thus, the conventional organic buildup substrates cannot support these kinds of silicon chips anymore. To address these needs, Si interposer with TSV has emerged as a good solution to provide high wiring density interconnection, to minimize CTE mismatch to the Cu/low-k chip that is vulnerable to thermal-mechanical stress, and to improve electrical performance due to shorter interconnection from the chip to the substrate. This paper presents the development of TSV interposer technology for a 21×21 mm Cu/low-k test chip on FCBGA package. The Cu/low-k chip is a 65 nm, 9-metal layer chip with 150 µm SnAg bump pitch of total 11,000 I/O, with via chain and daisy chain for interconnect integrity monitoring and reliability testing. The TSV interposer size is 25×25×0.3 mm with CuNiAu as UBM on the top side, and SnAgCu bumps on the underside. The conventional BT substrate size is 45×45 mm with BGA pad pitch of 1 mm and core thickness of 0.8 mm. Mechanical and thermal modeling and simulation for the FCBGA package with TSV interposer have been performed. TSV interposer fabrication processes and assembly process of the large die mounted on TSV interposer with Pb-free micro solder bumps and underfill have been set up. The FCBGA samples have been subjected to moisture sensitivity test and thermal cycling (TC) reliability assessments.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.