Abstract

An 80 MHz surface acoustic wave (SAW)-based gyroscope utilizing a progressive wave was developed on a 128° YX LiNbO3 piezoelectric substrate. The sensor developed consists of two SAW oscillators in which one is used as the sensing element and has metallic dots in the cavity between input and output interdigital transducers (IDTs). The other is used as the reference element. Coupling of modes (COM) modeling was conducted to determine the optimal device parameters prior to fabrication. On the basis of the simulation results, the device was fabricated and then measured on a rate table. When the device was subjected to an angular rotation, oscillation frequency differences between the two oscillators were observed because of the Coriolis force acting on the metallic dots. Depending on the angular velocity, the difference in oscillation frequency was modulated. The obtained sensitivity was approximately 52.35 Hz deg-1 s-1 at an angular rate range of 0–1000 deg/s. Device performances at different mass weights, mass positions, and temperatures were characterized. Good thermal stability was also observed during the evaluation process.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.