Abstract

Super-junction (SJ) devices have been developed to improve the trade-off relationship between the blocking voltage (VBD) and specific on-resistance in unipolar power devices. This SJ structure effect is expected in SiC unipolar devices. Multi-epitaxial growth is a known fabrication method for SJ structures where epitaxial growth and ion implantation are repeated alternately until a certain drift-layer thickness is achieved. In this study, we fabricated two types of test elemental groups with an SJ structure to evaluate the breakdown voltage (VBD) and specific resistivity of the drift layer (Rdrift). Experimental results show that VBD exceeded the theoretical limit of the 4H-SiC by 300V, and Rdrift agreed well with the estimated value from the device simulation. The beneficial effects of the SJ structure in the SiC material on VBD and Rdrift were confirmed for the first time.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.