Abstract
Herein, novel Co3O4·CdO·ZnO-based tri-metallic oxide nanoparticles (CCZ) were synthesized by a simple solution method in basic phase. We have used Fourier Transform Infrared Spectroscopy (FTIR), X-ray Diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Field Emission Scanning Electron Microscope (FESEM), Dynamic Light Scattering (DLS), Tunneling Electron Microscopy (TEM), and Energy-Dispersive Spectroscopy (EDS) techniques to characterize the CCZ nanoparticles. XRD, TEM, DLS, and FESEM investigations have confirmed the tri-metallic nanoparticles’ structure, while XPS and EDS analyses have shown the elemental compositions of the CCZ nanoparticles. Later, a Au/μ-Chip was modified with the CCZ nanoparticles using a conducting binder, PEDOT: PSS (poly(3,4-ethylenedioxythiophene) polystyrene sulfonate) in a sol-gel system, and dried completely in air. Then, the CCZ/Au/μ-Chip sensor was used to detect methanol (MeOH) in phosphate buffer solution (PBS). Outstanding sensing performance was achieved for the CCZ/Au/μ-Chip sensor, such as excellent sensitivity (1.3842 µAµM−1cm−2), a wide linear dynamic range of 1.0 nM–2.0 mM (R2 = 0.9992), an ultra-low detection limit (32.8 ± 0.1 pM at S/N = 3), a fast response time (~11 s), and excellent reproducibility and repeatability. This CCZ/Au/μ-Chip sensor was further applied with appropriate quantification results in real environmental sample analyses.
Highlights
Methanol (MeOH) has attracted extensive interest for years because of its multipurpose utility in numerous fields [1,2]
The diffraction peaks appearing at 2θ values of 32.1◦, 35.0◦, 36.0◦, 47.1◦, 57.0◦, 63.2◦, 67.0◦, 67.9◦, and 69.0◦ can be correlated to the planes (100), (002), (101), (102), (110), (103), (200), (112), and (201) of the cubic ZnO
These X-ray Diffraction (XRD) peaks can be assigned to the standard
Summary
Methanol (MeOH) has attracted extensive interest for years because of its multipurpose utility in numerous fields [1,2]. It is a vital raw material in the production of glycol, olefins, formaldehyde, pesticides, etc., and is noteworthy for use in direct methanol fuel cells [3]. Many analytical techniques have been published for detecting MeOH, such as spectrophotometry, chromatography, electrochemistry, and colorimetry [8,9]. In comparison to these techniques, which require costly and sizeable equipment, the electrochemical technique is handy and less expensive, and shows better selectivity and higher sensitivity in a quick response time [10]
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.