Abstract

It is a time consuming and very skillful task for researchers or developers on computational mechanics to modify a program for a single processor to the one for parallel computation. This is a serious bottleneck for parallel computation, even though general-purpose parallel computational library such as MPI is applied in his modification. We developed a parallel matrix solver platform, called ‘Parallel Computing Platform/PCP, based on domain de composition scheme for various numerical schemes such as finite element method (FEM), finite difference method (FDM) and finite volume method (FVM) to accelerate a smooth shift to parallel computational world. Some parallel software such as PETSc, Aztec, GEOFEM and ADVENTURE had been developed, however, these are for professionals in parallel computations and not valid for our purpose. In our platform, what a user should do is just to call the platform at the stage of stiffness matrix calculation. GMRES and Bi-CGSTAB with some pre-conditioners are used as a basic matrix solver. The option of Lagrange-multiplier is also attached. For the partitioning, a fast graph generator for arbitrary elements and the interface with MeTis are equipped. Our platform is valid for a variety of hardware, including single processor based WS, by exchanging Makefile.in. The effectiveness of our platform is evaluated with several examples in finite element fluid dynamics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.