Abstract

This paper introduces a newly developed integrated multigeneration energy system designed for a smart community. The system constitutes of various renewable energy sources, including solar and wind farms, and a quintuple geothermal system with reinjection. The system meets the demand and provides the main commodities of a small city with 5000 houses for their electricity, space heating, domestic hot water, and fresh water. The system is analyzed both energetically and exergetically using thermodynamic principles. The overall energy and exergy efficiencies of the proposed system are found to be 81.3% and 84.6% respectively. In addition, the energy and exergy efficiencies of the PVT system are 57.9% and 49.2%, respectively. The total electricity production is evaluated at 430 MW, while the capacity for domestic hot water is 20 MW. District heating is incorporated into this system at a capacity of 50 MW. The energy and exergy efficiencies of the geothermal system are found to be 27.6% and 35.7% respectively. Within the organic Rankine cycle, the exergy destruction at the boiler and the condenser add up to 15.8 MW, which makes up 94% of the total exergy destruction of this cycle. Moreover, a number of parametric studies are conducted to evaluate the level of influence that key parameters have on each system and consequently the overall system performance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.