Abstract

Abstract This paper features the integration of two renewable energy sources, making a new trigeneration system for residential applications. The system is primarily powered by solar photovoltaic-thermal (PVT) along with geothermal energy. This trigeneration system consists of a ground source heat pump, solar system, high-grade and low-grade heat exchangers, a heat pump system, and a water storage tank (WST). The objective of this system is to provide the main commodities for residential use including domestic hot water (DHW), electricity, and space heating. The system is analyzed energetically and exergetically using thermodynamic-based concepts. The overall energy and exergy efficiencies of the proposed system are found to be 86.9% and 74.7%, respectively. In addition, the energy and exergy efficiencies of the PVT system are obtained to be 57.91% and 34.19%, respectively. The exergy destructions at the high-grade heat exchanger and the water storage tank add up to 36.9 kW, which makes up 80% of the total exergy destruction of the system. Additionally, parametric studies are conducted to evaluate the degree of impact that various important parameters have on the overall system performance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.