Abstract

This paper presents an inertial pump with rectangular piezoelectric actuators. The mass block adhered at the free end of the actuator increases the actuator deformation, and the pump chamber is separable. Theoretical and experimental analyses are conducted. The different drive modes with the mass block, different excitation electric signals, and their influence on the performance of the piezoelectric pump are investigated. The drive mode is divided into the mass block adhered with two rectangular piezoelectric actuators, one of the actuators, and actuators without mass blocks. The square wave, sine wave, and triangle wave constitute different excitation electric signals. The experimental results prove that the pump with the mass block adhered with two rectangular piezoelectric actuators and driven by the square wave has a wide working frequency range and high performance. The highest flow rate reached is 72 ml/min at 160V, 20Hz. The pump with the mass block adhered with one of the actuators and driven by the square wave generates the loudest noise of 97.6 dB at 160V, 35Hz.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.