Abstract
Meningioma is the most common intracranial tumor in adulthood. With a clear female predominance and a recurrence rate that reaches 20%, it is, despite being considered a benign tumor, a pathology that greatly compromises post-diagnosis quality of life. Its prone to recur or progress to a higher degree is difficult to predict in the absence of obvious histological criteria. This project aims to develop an automatic methodology to aid in the diagnosis of meningiomas that is objective and easily reproducible. The methodology is based on histopathological image analysis using artificial intelligence and machine learning algorithms. It includes a semi-automatic process of identification and cleaning of the scanned samples, an automatic detection of the nuclei of each image and, finally, the parameterization of the samples. The obtained data together with the clinical information will be analyzed using statistical methods in order to provide a methodology to support clinical diagnosis and decision-making in patient management. The result is the development of an effective methodology that generates a set of data associated with morphological parameters with different trends according to the pathological groups studied. A tool has been developed that allows an effective semiautomatic analysis of the images to evaluate these parameters in an objective and reproducible way, helping in clinical decision-making and facilitating to undertake projects with large sample series. Clinical Relevance- The main contribution of this project is in the field of neuropathology, for the diagnosis of meningiomas, the most common brain tumor. The present project provides an objective and quantifiable prognosis methodology for the meningiomas, offering a more precise monitoring of the treatment applied to the patient, resulting in a better prognosis and better quality of life.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.