Abstract
Abstract Phloridzin has been an attractive target for the development of preparation methodologies due to its various applications as pharmaceutical ingredient and food additive. In this study, an enzymatic synthesis approach using engineered P. pastoris GS115 was developed to produce phloridzin. Four factors, identifying as key factors affecting the phloridzin yield, were optimized by response surface methodology as follows: induction time 121.8 h, pH 7.0, methanol 0.75%, and a rotation speed 194 rpm. The maximal yield of phloridzin reached 41.59 mg/L (95.31 μM) and the specific bioconversion rate of substrate was up to 98.50% with 1L working volume in a 5L bioreactor under the optimal conditions. Phloridzin with purity of 93.98% and recovery of 78.14% was achieved just using affinity chromatography and preparative high performance liquid chromatography ( Pre -HPLC). These results confirm the enzymatic synthesis developed provides an efficient alternative to traditional approach for the preparation of phloridzin in vitro .
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.