Abstract
The relevance of this type of network is associated with the development and improvement of protocols, methods, and tools to verify routing policies and algorithmic models describing various aspects of SDN, which determined the purpose of this study. The main purpose of this work is to develop specialized methods to estimate the maximum end-to-end delay during packet transmission using SDN infrastructure. The methods of network calculus theory are used to build a model for estimating the maximum transmission delay of a data packet. The basis for this theory is obtaining deterministic evaluations by analyzing the best and worst-case scenarios for individual parts of the network and then optimally combining the best ones. It was found that the developed method of theoretical evaluation demonstrates high accuracy. Consequently, it is shown that the developed algorithm can estimate SND performance. It is possible to conclude the configuration optimality of elements in the network by comparing the different possible configurations. Furthermore, the proposed algorithm for calculating the upper estimate for packet transmission delay can reduce network maintenance costs by detecting inconsistencies between network equipment settings and requirements. The scientific novelty of these results is that it became possible to calculate the achievable upper data delay in polynomial time even in the case of arbitrary tree topologies, but not only when the network handlers are located in tandem. Doi: 10.28991/ESJ-2022-06-05-010 Full Text: PDF
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.