Abstract

The problem of data packet dropout and transmission delays induced by communication channel in networked control systems (NCSs) is studied in this paper. We model the continuous-time NCSs with data packet dropout and transmission delays as ordinary linear systems with time-varying input delays. By using the Lyapunov–Razumikhin function techniques, delaydependent condition on the stabilization of NCSs is obtained in terms of linear matrix inequalities (LMIs). Stabilizing state feedback controllers can then be constructed by using the feasible solutions of some LMIs. The admissible upper bounds of data packet loss and delays can be computed by using the quasi-convex optimization algorithm. Numerical examples illustrate the effectiveness of the proposed approach.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.