Abstract

For sensor systems and data communication, electro optical integration technologies are an auspicious alternative to conventional electronic system integration. To make the photonic integration more attractive compared to electronic integration technologies, packaging concepts are required which are suitable for mass production using standard processes of the electronics packaging. In this paper, a photonic transceiver integration technology is proposed. To take advantage of the development environments and processes commonly used in electronics packaging, a planar assembly strategy is preferred. That is why the concept uses glass substrates with planar lightwave circuits (PLC) and passive fiber chip coupling. By the use of flip-chip VCSELs and photodiodes, standard pick-and-place assembly becomes possible. Hence, a wafer-level manufacturing in high quantities is feasible. Additionally, the development processes for the photonic integration are of special interest in this paper. Until now, there is no development environment available to model or simulate entire optical devices in one workflow. Every sub part of the model requires a single tool instead. By using 3D-CAD, this work proposes to merge several sub-models into a single tool and achieves largely a simplified development of planar optical devices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.