Abstract

AbstractThe material point method (MPM) shows promise for the simulation of large deformations in history-dependent materials such as soils. However, in general, it suffers from oscillations and inaccuracies due to its use of numerical integration and stress recovery at non-ideal locations. The development of a hydro-mechanical model, which does not suffer from oscillations is presented, including a number of benchmarks which prove its accuracy, robustness and numerical convergence. In this study, particular attention has been paid to the formulation of two-phase coupled material point method and the mitigation of volumetric locking caused numerical instability when using low-order finite elements for (nearly) incompressible problems. The numerical results show that the generalized interpolation material point (GIMP) method with selective reduced integration (SRI), patch recovery and composite material point method (CMPM) (named as GC-SRI-patch) is able to capture key processes such as pore pressure build-up and consolidation.KeywordsCoupled behaviorHydro-mechanicalLarge deformationMaterial point methodReduced integrationConsolidation

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.