Abstract
A novel rotary magnetic refrigerator was designed and built at the Federal University of Santa Catarina (UFSC). The optimized magnetic circuit is a two-pole system in a rotor-stator configuration with high flux density regions of approximately 1 T. Eight pairs of stationary regenerator beds filled with approximately 1.7 kg of gadolinium spheres (425–600 µm diameter) were placed in the magnetic gap. Two low-friction rotary valves were developed to synchronize the hydraulic and magnetic cycles. The valves were positioned at the hot end to avoid heat generation in the cold end. In this work, experimental results are presented as a function of the operating frequency, fluid flow rate, hot reservoir temperature and thermal load. The performance of the device was evaluated in terms of the coefficient of performance (COP) and overall second-law efficiency (η2nd). The maximum no-load temperature span was 12 K at 1.5 Hz and 150 L h−1, and the maximum zero-span cooling power was 150 W at 0.8 Hz and 200 L h−1. For a thermal load of 80.4 W, at 0.8 Hz and 200 L h−1, the device generated a temperature span of 7.1 K, with a COP of 0.54 and η2nd of 1.16%.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.