Abstract

A novel rice-based snack enriched with chicory root flour (CRF) was developed by twin-screw extrusion. Chicory (Cichorium intybus L.) is one of the promising medicinal plants for the development of innovative food and may be considered a functional food ingredient. Central composite design (CCD) was employed to generate snack formulations by varying feed moisture (M, 16.3–22.5%), screw speed (SS, 500–900 rpm) and CRF content (20–40%). The optimization according to artificial neural network modeling and a genetic algorithm was applied to define optimal process conditions (17.6% moisture, 820 rpm and 24.1% of CRF) for obtaining the product with the highest expansion (3.34), crispiness (3.22 × 10−3), volume (2040 m3), degree of gelatinization (69.70%) and good color properties. Bulk density (110.33 g/L), density (250 kg/m3), and hardness (98.74 N) resulted in low values for the optimal sample. The descriptive sensory analysis evaluated low hardness and bitterness, with high crispiness for the optimal extrudate. This study points to the possibility of a novel chicory enriched extrudate production with desirable physicochemical and sensory properties.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.