Abstract

This meta-analysis review undertakes a comprehensive examination of various approaches for identifying myopathic fillets and meticulously evaluates the effects of bird age, deboning time, and different cooking and storage conditions on woody breast (WB) myopathic conditions in broiler deboned fillets. The data, meticulously collected from 20 articles based on predefined inclusion criteria sourced from various databases and online resources, reveal significant insights. For instance, the analysis uncovers that deboning time significantly affects Meullenet-Owens Razor Shear (MORS), Blunt Meullenet-Owens Razor Shear (BMORS), and descriptive analysis values (p < 0.001). Instrumentation techniques, such as compression force and shear force, along with different cooking conditions, strongly impact BMORS shear force values (R2 = 86.80%), with significance levels ranging from 0.01 to 0.001. Deboning time also substantially impacts MORS shear force values (R = 64.03%). In contrast, the effects of deboning time, bird age, and cooking conditions on descriptive sensory evaluation are minimal when compared to woody breast fillets (age of birds: R2 = 26.53%; cooking conditions: R2 = 32.57%; deboning time: R2 = 10.06%). The overall effect of bird age on chicken breast meat quality shows significant differences for the evaluated parameters (Hedges' g [95% CI] = -0.72 [0.17, 1.26], I2 = 93%, p < 0.01). The sous vide cooking method significantly affects shear force energies and sensory descriptive evaluation for woody breast fillets (Hedges' g [95% CI] = 5.30 [-50.30, 83.40], I2 = 98%, p < 0.01). These findings, with their significant implications, provide valuable insights for optimizing processing conditions in the poultry industry to reduce woody breast occurrences and enhance meat quality, instilling confidence in the robustness of the research.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.