Abstract

Physicochemical properties of rice-based expanded snacks extruded with rice flour, high amylose starch, and isolated soy protein were investigated using a twin-screw extruder. The ingredients were extruded at various feed moisture contents (19~23%) and screw speeds (200~400 rpm) at a constant feed rate (43.4 kg/hr). Bulk density and apparent density of rice snacks were 0.06~0.21, and 0.55~0.65 respectively. Bulk density, apparent density, water absorption index, and breaking strength of rice snacks increased with increasing feed moisture content and decreas- ing screw speed. However, expansion and water solubility index of rice snacks increased with decreasing feed moisture content and increasing screw speed. Hunter's color L values of rice snacks was lower with increasing screw speed at feed moisture contents of 19% and 21%, but was not significantly different from a feed moisture content of 23%. On the other hand, a and b values of rice snacks were higher with increasing screw speed a feed moisture content of 19%. X-ray diffraction intensity of rice snacks decreased with decreasing feed moisture content and increasing screw speed. X-ray diffraction of rice snacks was V-type at feed moisture contents of 19% and 21% and screw speeds of 300, and 400 rpm. In the microstructure of the cross section of rice snacks, air cells in rice snacks were not well formed, and cell walls were thicker with increasing feed moisture content and decreasing screw speed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call