Abstract
In this study, the effects of extrusion conditions such as feed moisture content (20%, 24%, and 28%), screw speed (200, 300, and 400 rpm), and extrusion temperature (130, 150, and 170°C) on the physical and functional properties (moisture content, expansion ratio, bulk density, hardness, water absorption index [WAI], water solubility index [WSI]) of intermediate wheatgrass (IWG) were investigated for the first time. Response surface methodology was used to model and optimize the extrusion conditions to produce expanded IWG. The model coefficient of determination (R 2) was high for all the responses (0.87–0.98). All the models were found to be significant (p < 0.05) and were validated with independent experiments. Generally, all the extrusion conditions were found to have significant effects on the IWG properties measured. Increasing the screw speed and decreasing the extrusion temperature resulted in IWG extrudates with a high expansion ratio. This also resulted in IWG extrudates with generally low hardness and bulk density. Screw speed was found to have the most significant effect on the WAI and WSI, with increasing screw speed resulting in a significant (p < 0.05) decrease in WAI and a significant (p < 0.05) increase in WSI. The optimum conditions for obtaining an IWG extrudate with a high expansion ratio and WAI were found to be 20% feed moisture, 200 –356 rpm screw speed, and 130–154°C extrusion temperature.Practical ApplicationExtrusion cooking was employed in the production of expanded IWG. This research could provide a foundation to produce expanded IWG, which can potentially be used as breakfast cereals and snacks. This is critical in the efforts to commercialize IWG for mainstream food applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.