Abstract

The aim of this study was to develop a multiplex PCR assay capable of rapidly differentiating two major Avipoxvirus (APV) species, Fowlpox virus (FWPV) and Pigeonpox virus (PGPV), which cause disease in bird species. Despite the importance of a rapid differentiation assay, no such assay exists that can differentiate the APV species without sequencing. To achieve this, species-specific target DNA fragments were selected from the fpv122 gene of FWPV and the HM89_gp120 gene of PGPV, which are unique to each genome. Nine samples collected from unvaccinated chickens, pigeons, and a turkey with typical pox lesions were genetically identified as FWPV and PGPV. The designed primers and target DNA fragments were validated using in silico analyses with the nucleotide Basic Local Alignment Search Tool. The multiplex PCR assay consisted of species-specific primers and previously described PanAPV primers (genus-specific) and was able to differentiate FWPV and PGPV, consistent with the phylogenetic outputs. This study represents the first successful differentiation of FWPV and PGPV genomes using a conventional multiplex PCR test. This assay has the potential to facilitate the rapid diagnosis and control of APV infections.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call