Abstract
Using near-infrared (NIR) spectroscopy, an assay method which is not affected by such elements of tablet design as thickness, shape, embossing and scored line was developed. Tablets containing caffeine anhydrate were prepared by direct compression at various compression force levels using different shaped punches. NIR spectra were obtained from these intact tablets using the reflectance and transmittance techniques. A reference assay was performed by high-performance liquid chromatography (HPLC). Calibration models were generated by the partial least-squares (PLS) regression. Changes in the tablet thickness, shape, embossing and scored line caused NIR spectral changes in different ways, depending on the technique used. As a result, noticeable errors in drug content prediction occurred using calibration models generated according to the conventional method. On the other hand, when the various tablet design elements which caused the NIR spectral changes were included in the model, the prediction of the drug content in the tablets was scarcely affected by those elements when using either of the techniques. A comparison of these techniques resulted in higher predictability under the tablet design variations using the transmittance technique with preferable linearity and accuracy. This is probably attributed to the transmittance spectra which sensitively reflect the differences in tablet thickness or shape as a result of obtaining information inside the tablets.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.