Abstract

Body-worn noninvasive physilogical sensors are needed to continuously monitor soldiers for hemorrhage and to provide real-time information for minimally skilled medics to treat the injured. In the hospital intramucosal pHi of the gut is used to monitor shock and its treatment. We hypothesize that abdominal wall muscle (AWM) pH can be measured noninvasively using near infrared (NIR) spectroscopy and partial least squares analysis (PLS) and will correlate with pHi. METHODS: AWM pH was measured with microelectrodes and gastric pHi was measured with a tonometric catheter simultaneously while NIR spectra were collected using prototype LED spectrometers placed on the pig's flanks. Animals were subject to hemorrhagic shock at 45 mm Hg for 45 minutes, then resuscitated with blood and lactated ringers. Relationships between electrode pH, pHi and NIR spectra were developed using PLS with cross validation. RESULTS: NIR spectral changes noninvasively acquired through the skin were shown to be from the muscle, not from changes in skin blood flow. Trending ability (R2) model accuracy (RMSD), and relative error were calculated for individual pigs. Using electrode pH as the reference, average R2 was 0.88 with a predicted accuracy of 0.17 pH units, a 9.3% relative error. Slightly degraded results were observed when pHi was used as a reference. CONCLUSIONS: NIR measurement of tissue pH can be used to noninvasively monitor for shock and guide its treatment in a swine model. These measurements correlate with gastric pHi, a clinically accepted measure of shock, providing an approach to develop similar methodology for humans.© (1999) COPYRIGHT SPIE--The International Society for Optical Engineering. Downloading of the abstract is permitted for personal use only.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.