Abstract

The degradation of naphthalene in soil–slurry systems was studied using four different organisms and two soils. Organisms with zero-order, first-order, and Michaelis–Menten rates were selected. The soils had substantially different sorption distribution coefficients. Sorption and desorption was evaluated in abiotic soil–slurry systems. The desorption process was described by a model that accounts for equilibrium, rate-limited and non-desorbing sites. Biodegradation parameters were measured in soil-extract solutions. Bioavailability assays, inoculated soil slurries, were conducted and both liquid- and sorbed-phase naphthalene concentrations were measured over time. For the less sorptive soil, the results could be explained by sequential desorption and degradation processes. For the other soil, enhanced degradation was clearly observed for the organisms with first-order and Michaelis–Menten rates. Several explanations are explored for these observations including direct sorbed-phase degradation and the development of elevated substrate concentrations at the organism/sorbent interface. No enhancement was found for the organism with zero-order kinetics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.