Abstract
The degradation of naphthalene was studied in soil-slurry systems, and a quantitative model was developed to evaluate the bioavailability of sorbed-phase contaminant. Four soils with different organic matter contents were used as sorbents. Two naphthalene-degrading organisms, Pseudomonas putida G7 and NCIB 9816-4, were also selected. Sorption isotherms and single and series dilution desorption studies were conducted to evaluate distribution coefficients, desorption parameters, and the amount of non-desorbable naphthalene. Biodegradation kinetics were measured in soil extract solutions and rate parameters estimated. Bioavailability assays involved establishing sorption equilibrium, inoculating the systems with organisms, and measuring naphthalene concentrations in both sorbed and dissolved phases over time. For all four soils, the sorption isotherms were linear, and desorption could be described by a model involving three types of sites: equilibrium, nonequilibrium, and non-desorption. Enhanced bioavailability, as evidenced by faster than expected degradation rates based on liquid-phase concentrations, were observed in soils with the higher sorption distribution coefficients. These observations could be described using model formulations that included solid-phase degradation. In all soils studied, degradation of non-desorbable naphthalene was observed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.