Abstract

A wood-based sandwich panel with a corrugated core was developed as a building material. A matched-die mold manufactured from commercial plywood was used to fabricate the corrugated panels through a cold-forming process. A cold-setting resin was applied on southern yellow pine (Pinus spp.) veneers with an average thickness of 4 mm, and four plies of them were formed into a corrugated geometry using a wooden mold. When the resin was cured, the corrugated panel of veneers retained the corrugated shape after load removal. Facesheets of the sandwich structures were fabricated using three plies of the same veneers. To evaluate the effect of this corrugated geometry on the structural performance, the same veneers — regarding number, thickness, and orientation — used for the sandwich panel were adopted to fabricate laminated flat panels. Both sandwich and laminated flat panels were submitted to a four-point bending test. The results confirmed the sandwich effect, i.e. a 1741% increase in the bending stiffness of sandwich panels compared to that of laminated flat panels. Sandwich panels developed in this study were compared to Structural Insulated Panels (SIPs), wood-framed structures known as stud walls, and sandwich panels produced using a hot-pressing technique. The cold-formed sandwich panels had higher structural performance than commercial building materials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.