Abstract
The article presents the results of the development of a finite element resonator model of a tuning fork-type vibration level detector. The model is developed in the Ansys Workbench software product. Options for evaluating the characteristics of the resonator are proposed, including strength, modal, and harmonic analyses. A model of free damped resonator oscillations has been developed, including dynamic strength calculation in combination with a computational fluid dynamics module. The model makes it possible to estimate the frequency of resonator vibrations in liquids with different densities and viscosities. The simulation results are compared with laboratory experiments. The comparison showed a deviation in resonant frequencies of no more than 7%. The simulation results will be used to carry out structural optimization of the resonator geometry to expand the range of densities and viscosities of the working fluids of the level indicator.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have