Abstract

This paper presents a new robust decentralized control of nonlinear interconnected systems, which is applied and validated on a large scale power system. Our work is performed in three steps. Firstly, we have developed the polynomial description of the nonlinear uncertain and interconnected system using odd Kronecker power of state vectors, which is an easy-manipulation model for such complex systems. Then we applied Lyapunov’s direct method of stability analysis, associated with a quadratic function, in order to determine a sufficient condition for global asymptotic stability by applying a nonlinear, decentralized and optimal polynomial control. Finally, we carried out a simulation study on a nonlinear uncertain power system with three interconnected machines. We considered different cases of perturbations on its state variables as well as different cases of fault locations. We prove via advanced simulations, the effectiveness of the proposed control technique which is able to mitigate the successive amplitudes of the oscillations, to limit the control actions and to enhance the power system transient stability.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call