Abstract

Computational knee models that replicate the joint motion are important tools to discern difficult-to-measure functional joint biomechanics. Numerous knee kinematic models of different complexity, with either generic or subject-specific anatomy, have been presented and used to predict three-dimensional tibiofemoral (TFJ) and patellofemoral (PFJ) joint kinematics of cadavers or healthy adults, but not pediatric populations.The aims of this study were: (i) to develop subject-specific TFJ and PFJ kinematic models, with TFJ models having either rigid or extensible ligament constraints, for eight healthy pediatric participants and (ii) to validate the estimated joint and ligament kinematics against in vivo kinematics measured from magnetic resonance imaging (MRI) at four TFJ flexion angles.Three different TFJ models were created from MRIs and used to solve the TFJ kinematics: (i) 5-rigid-link parallel mechanism with rigid surface contact and isometric anterior cruciate (ACL), posterior cruciate (PCL) and medial collateral (MCL) ligaments (ΔLnull), (ii) 6-link parallel mechanism with minimized ACL, PCL, MCL and lateral collateral ligament (LCL) length changes (ΔLmin) and (iii) 6-link parallel mechanism with prescribed ACL, PCL, MCL and LCL length variations (ΔLmatch). Each model’s geometrical parameters were optimized using a Multiple Objective Particle Swarm algorithm.When compared to MRI-measured data, ΔLnull and ΔLmatch performed the best, with average root mean square errors below 6.93° and 4.23 mm for TFJ and PFJ angles and displacements, respectively, and below 2.01 mm for ligament lengths (<4.32% ligament strain). Therefore, within these error ranges, ΔLnull and ΔLmatch can be used to estimate three-dimensional pediatric TFJ, PFJ and ligament kinematics and can be incorporated into lower-limb models to estimate joint kinematics and kinetics during dynamic tasks.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.